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The problem of behavior of thermal (or concentration) perturbations in a fluid flow is of con- 
siderable interest in the theory of heat and mass transfer, and in various other applications 
(see, for example, [l to 31). In th e case of a steady state flow any temperature (or admix- 

ture concentration) perturbation may be considered as a superposition of “normal” pertnrba- 
tions, exponentially dependent on time, on the characteristic decrements. The problem is 
thus reduced, in essence, to the determination of the spectrnm of normal characteristic per- 
turbations. The thermal perturbation spectmm of certain incompressible fluid flows between 
two isothermal planes is analyzed below. 

1. If there are no internal heat sources in the fluid, then the temperature perturbations 
are defined by the heat conductivity Eqs. 

aT 
,,+C’T=xAT 

where the thermal diffusivity coefficient X is assumed to be constant. Thermal perturba- 
tions are considered to be so small, that any free convection effects may be disregarded. 
Velocity v is assumed to be known. 

We shall consider a flow of fluid between two parallel planes x =fh. Selection of the 
z-axis in the direction of flow results in there being only one velocity component I different 
from zero, with vX = v,, = 0, v 
ting as the velocity unit the f, 

= v(z). We rewrite Eq. (1.1) in a dimensionless form, selec- 
c aracteristic flow velocity II, and as units of length and time 

h and hz/X respectively, and using an arbitrary unit for temperature 

Uh 
= AT, P’X (1.2) 

Here all values are dimensionless, and p is the P&let number. The normal temperature 
perturbations have the form 

T (5, 2, t) - 0 (5) exp (--Id + ikz) (1.3) 
where 6(r) is the perturbation amplitude, k the real wave number, and x the perturbation 
decrement. Substituting (1.3) into (1.2), we obtain the amplitude Eq. 

e” + [a - kr - ikpv (z)] 0 = 0 (1.4) 
As at the isothermal planes x = + 1, the perturbations vanish 

8 (fi) = 0 (1.5) 
The boundary value problem (1.4). (1.5) defines the characteristic perturbation spectrnm 

o(r) together with corresponding decrements A. If h = h + ix,, then its real part h repre- 
sents the decrement itself, while its imaginary part A, defines the perturbation freqiency 
and phase velocity. It is obvious that these assumptions rule out the presence of any mach- 
anisms (such as “S uperheating”). which might lead to instability, and show that perturba- 
tions must decay. This can be directly ascertained from Eq. (1.4). In order to prove this, we 
multiply this equation by the complex conjugate solution 8 l (x), integrate with respect to x 
from - 1 to + 1, and add the obtained integral relationship to the complex conjugate. We then 
obtain 
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(1 tYp+fc*ie 12) d?T (1.6) 

-1 -1 

It is evident from this that A+ h+ = Z&x,> 0, which proves that normal perturbations are 
alway damped. 

It cau be readily shown in the same way that normal thermal perturbations decay in an 
incomprersible fluid moving in an ubitrary closed cavity with isothermal boundaries (such 
a motion may, for exampIe be generated by motions of a part of the boundsry). 

2. The spectrum analysis at low velocities of flow may be carried out in a msnner simi- 
lar to that used in the snalyeis of hydrodynamic perturbations in a plane-parallel flow rd. 

We expand the amplitude and.the decrement into a power series of parameter ikp (essen- 
tially of flow velocity powers) 

0 =: g(o) $ (ikp) g(‘) $ ( ikp)26(a) -f- , . . (2.1) 

h- jEB = p(O) + (&jr) p(l) + (i&p)* f.t(‘) + . . . (2.2) 

Equations of successive app~xima~ons are 
g(O)” + i&j@) = 0’ g(l)” + l&$1) = _ $‘)#0 + &fOf 

f)@Y + ILlo)g;8) = _ P(1)3(t1 _ P,(z)g(o) _+. V~(r) 
(2.3) 

.*..,.,..............*.....*. 

with boundary conditions for emplftudes t?@) 

f$*J (& I) = 0 (2.4) 

The first of Eqs. (2.3) defines the perturbation spectrum in a fluid at rest (p = 0) 

=: ‘I, (n + l)-w (n = 0, 1, Z,...) (2.5) 

cos r/s (n + 1) Jr5 (n = 0, 2, 4,...) 

sin Va (n + l)nx (n = 1,3,5,...) (2.6) 

The ampIftndes of zero order approximation 8nfo) are orthogonal and normalized 
1 

s e (o)e~(o) ax = a,* (2.7) 
n 

-1 

For the first and higher order approximations we obtain nonhomogenone e 
pF,“~~$~.m the condition of solvability of which we derive corrections for decrements &, 

Amplitader 0, *) , 8,( 2, ,... may be sought in the form of expansions of eigenfunctions of the 
zero order rppioxlmation (2.6) 

Expulsion coefficients a$? 
m 

are found in the usual manner from the successive approxi- 
mation Eqa. (2.3). while from the solvability conditions we obtain 

3. When the flow velocity profile is of even parity tt (x) = u (- x), then obviously two 
types of perturbation are possible with respect to x, namely even and odd. Decrement COF 
rectione, beginning with decrement 4’) , gsnerally differ in this case from zero. This means 
that thermal perturbations in the presence of an even velocity profile have for an arbitrary 
small p the character of thermal waves, spreading along the stream with a certain phase vel- 
ocity defined by 4’). 

As an exampIe.we shall adduce the first two decrement corrections for the case of a Poi- 

(*) M. Oreahlna and Z. Shtarkman had participated in the computations. 
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Summation in the quadratic correction formula for /~‘,2) is carried out with respect to in- 

dices m of the same arity as that of the level number n. 
The values of p$,lp and k2) for low levels of the spectrum are shown in the Table. 
with known 4,“’ and ,u’,~) the real and imaainarv Darts of decrements mav be derived for 

,w 
n 

low velgcity ‘flows from expansion (2.2) 
h,, = k* + p,(O)- k2p2pn c2) -t . . . 

0 0.8693 
0.7173 
0.6832 
0.6793 
0.6748 

-0.001185 
-0.OO1116 

0.0002357 
o.OOO3099 
o.OOO2545 
o.OOO1988 
o.OOO1559 
O.OOO1244 

h,i = kpp,“) + . . . (3.2) 

Parameter p$,,t) defines (at small values of p) the 
thermal perturbation phase velocity in terms of units 
of the flow maximum velocity 

Ai 

c = kp -= A 
(1) (3.3) 

The thermal perturbation phase velocity, as may be 
seen from the Table and (3.1), is independent of the 
wave number k (there is no dispersion). From (3.1) we ._ ._ 

deduce that for large n we have c = 2/B, which means that the phase velocity of small scale 
perturbations coincides with the mean flow velocity. 

Values of c(‘,~’ are quite small. For example, with k = 1, the values of h, practically do 
not differ from values of damping increments in a fluid at rest up to p - 10. 

4. It will be readily seen that in the case of an odd velocity profile with u(z) = - u t-x), 
all negative decrement corrections vanish 

IL (1) = $3) 1 . . . - 0 (4.1) 
Expansion (2.2) in this case becomes 

h = Ica + I&” - k2p2td2) + . . . (4.2) 
Thus, at low velocities the decrements are real, frequencies and phase velocities are 

zero, and the corresponding perturbations decay monotonously. Obviously this result cannot 
be extrapolated, to finite values of p, as long as there may exist (and in fact it does exist) 
on the p-axis a singular point up to which expansions into power series of p are valid. In 
order to elucidate the character of this singnlarity it is necessary to consider the intersec- 
tion of real decrements 4. The position here is exactly the same as in the case of hydrody- 
namic perturbations in two-dimensional flows having an odd velocity profile 141. Repeating 
the reasoning given in paper 141, we can readily ascertain that with a decrement spectrum 
“simple” intersections, corresponding to an ordinary degeneration, are not possible, and 
that for specific values of p only ‘mergers’ of two adjacent real levels of different parities, 
with the formation of complex conjugate decrements are possible (formation of oscillatory 
perturbations with equal but opposite phase velocities). 

The Galerkin method may be used in this case for spectrum determination, with the “un- 
perturbed” amplitudes e,“), defined by (2.6) selected as basic functions. For finite values 
of p, the amplitude approximation is expressed by 

N-1 

6 = 2 c,e,(0) (4.3) 

?I==0 

From the orthogonality condition of the Galerkin method we obtain for coefficients 0, the 
system of N homogenous linear Eqs. 

N-l 

2 
c, [(h - h,(O))6 mn - ikpt’,,] = 0 (m 70, I,2 )..., N--l) (4.4) 

n=0 

Here I’,,,, are matrix elements defined in (2.9). In the case of au odd profile u (x) these 
matrix elements differ from zero for indices of different parity only. For specific velocity 
profiles the eigenvalues x of the matrix of system (4.4) define the characteristic decrements 
in terms of parameters p and k. Computations were carried out for a Couette flow u = x, and 
for a flow having a cubic velocity profile u = x - ~3. Approximation (4.3) contained N = 18 
functions. Matrix diagonalization was carried out on an ‘Aragats’ electronic computer. Lower 
levels of the decrement spectrum are shown on the Fig. 1 for the wave number k = 1. 

Heal parts of decrements A, for the eight lower levels, and the second powers of phase 
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‘yppqgzJ 
Fig. 1 

0” - $I’ + (h - /cZ) 8 = 0 (5.1) 
with boundary conditions (1.5). 

The decrement and amplitude spectra are found by 
conventional means. The decrements are 

h, = I/, (n + i)*nr + k2 + ‘lp pa 

(n = 0, 1, 2, 3 ,...) (5.2) 

Thus, all 4 remain real at all flow velocities 
(monotonoua perturbation decay), and increase quadratically with increasing p. We draw the 
attention to the difference between a thermal perturbation spectrum and the spectrum of hy- 
drodynamic perturbations in one and the same flow [S]. In the latter all levels merge pair- 
wise, and for large values of p oscillatory perturbations are only possible. 

The amplitudes of perturbations, both even and odd with respect to x are 

Rn = exp (Va pz) co9 Va (n + 1) n5 (n = 0, 2, 4,...) 

3, = exp (‘lrpz) sin %, (n + 1) nz (n = 1, 3, 5,...) (5.3) 
A comparison of (5.3) with the amplitudes in a fluid at rest (2.6) shows that the perturba- 

tions are ‘pressed’ by the transverse flow against plane x = 1, and that with p >> 1 these be- 
come localized in the boundary layer, the dimensionless thickness ofwhichia of the order 
of l/p. 

It is interesting to note the validity of the decrement spectrum (5.2) for the case of ther- 
mally insulated boundaries, in which the absence of heat flow must be stipulated instead of 
conditions (1.5). 

velocity c 2 (in units of flow velocity) are repreaen- 
ted in terms of the Peclet number p. Solid lines re- 
late to the Couette flow, and the dotted lines to the 
cubic velocity profile flow. The pairwise merging of 
real levels with formation of complex conjugate pairs 
is seen to occur with increasing p. Oscillatory per- 
turbations (thermal waves) appear at a finite value 
of p = p+, while the perturbation phase velocity be- 
comes zero at the point of merger and increases with 
increasing p. Oscillatory perturbations occur as the 
result of the two lower levels being merged when 
p+ -10. 

5. In concluding, we shall consider the thermal 
perturbation spectrum in a uniform transverse flow 
between permeable planes. We assume that in the 
plane x = - 1 we have a uniformly incoming flow 
which is uniformly sucked away at the same rate at 
plane x = 1. In this case the velocity of the fluid 
flow between the two planes has one component only 
which is perpendicular to the planes, and is indepen- 
dent of the coordinates. For the normal perturbation 
amplitude we now have instead of (1.4) an Eq. with 
constant coefficients 
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